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Introduction

et’s face it, nobody likes math. Not you, not me, not
L even the mathematicians. It's what they do for a

living. But do you think for a minute they spend their
weekends sitting around the back porch, their feet up, a
gin and tonic in hand, solving equations? Guess again!

Yet every now and then, an idea comes along that is
so important that it needs to be expressed in the elegant
simplicity of mathematics. A favorite example is the duality
between energy and matter. And though countless books
have been written on the topic, you and | still remember
the basics best by Einstein’s simple equation, E = MCz2.

Another case in paint, and the topic of this paper, is
the propagation of electromagnetic radiation. We can fill
volume after volume with convoluted descriptions of how
radio waves travel, how antennas work, how transmission
lines function—I know, I've written some of those books.
Or we can summarize the whole complicated mess by the
four simple equations written by James Clerk Maxwell, a
Scottish physics professor at Cambridge University, back
in 1864.

Maxwell’s equations form the basis of our understand-
ing of radio propagation, microwaves, optics, antenna
theory, troposcatter, moonbounce, and hold the innermost
secrets of DX itself. Except who the heck understands
them? Not you, not me, not even the mathematicians.

The Infamous Equations

Maxwell's equations, whether expressed in integral
(Fig 1) or differential (Fig 2) form, describe the behavior of
electromagnetic waves. From them we can gain an under-
standing of wave velocity, direction, polarization, refiection,
refraction, diffraction, absorption, attenuation and phase.
They are a shorthand notation for how waves work.

More important, Maxwell’s equations tell us that radio
waves, microwaves, ultraviolet, infrared, visible light, X-rays,
gamma rays, and cosmic rays are all the same stuff,
differing only in wavelength. And whether emanating from
sunlight, satellite or searchlight, all electromagnetic waves
behave fundamentally alike.

Free-Space Simplification

Look again at Fig 2, Maxwell’s equations in differential
form. Go ahead, it won’t hurt much. If they seem complex,
it's partly because these are general equations, which
describe propagation of electromagnetic waves through any
medium. Let us here limit our discussion to waves traveling
through free space (the stuff in which radio waves used for
communication spend most of their time.) We can now
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Fig 1—Maxwell’s integral equations.
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Fig 2—Maxwell’s differential equations.

simplify the equations considerably, as indicated in Fig 3.
What exactly do we mean by free space? Generally,
we mean vacuum, the absence of matter. One of the most
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Fig 3—Maxwell’s differential equations simplified for waves
in free space.

spectacular contributions of Maxwell’s equations is that they
lead us to an understanding that waves can travel through
nothingness.

Early radio experimenters had trouble understanding
this. They knew what happened to ripples in water when
you took the water away, and concluded that all waves
needed a medium in which to propagate. For radio waves,
they invented the mythical ‘“‘aether’” as a propagation
medium.

Researchers spent years looking for the ‘‘aether.” Only
they never found it. Because it doesn’t exist. Electro-
magnetic radiation is pure energy, and Maxwell’s equations
show that energy can (and does) exist absent any support-
ing medium. Yes, even in the empty depths of interstellar
space. How else would starlight reach us?

When we demonstrate electromagnetic radiation in the
laboratory, we generally do a pretty poor job of duplicating
free space. On the bench, our signals travel not through
vacuum at all, but rather through that mixture of mostly
nitrogen, a little oxygen, and various trace elements, which
raises a column of mercury 29.92 inches at sea level.

Why don’t we surround our waves with vacuum in the
laboratory? The problem is how to contain it. Even should
we manage to cram a box full to the top with those little
vacuum particles, should the box leak, the stuff gets all over
the workbench. It makes a mess. Have you ever tried to
clean up spilled vacuum? There’s really only one way—
with a vacuum cleaner.

In reality, the waves care little about our atmosphere.
Air is so nearly electrically inert as to have almost no
discernible effect upon electromagnetic wave propagation.
In truth, air does slow down the waves about six hundredths
of a percent. Hardly enough to hassle. So the equations
in Fig 3, simplified as they are for vacuum, do a very
credible job of describing wave propagation in the
Jlaboratory, in air, as well.

The Satanic Calculus

I've borrowed that title (and some of the ideas which
follow) from Dr. Bill Rosenthal, Professor of Mathematics
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Fig 4—A graph of something varying over time (also known
as a function).

at Ursinis College. All of you who got “A's” in calculus can
skip the next few sections.

Well, I'm glad to see you're all still here. Calculus is
the mathematics of functions, so let’s take a look at a func-
tion (see Fig 4). Here’s a graph of something changing over
time. It could be an electrical waveform viewed on an oscil-
loscope (the electronicker calls it ““damped oscillation with
a steadily decreasing dc offset’’), or perhaps a graph of how
our body temperature varies throughout the day. No matter.
Calculus is merely a set of tools for describing any function
mathematically.

Integrally Speaking

One of those tools is the integral, closely associated
with the “‘area under the curve.” If | hand Fig 4 to six differ-
ent students, and ask them to come up with a method for
determining the area under the curve, I'm likely to get a
half dozen different approaches. Let’s examine them.

Student number one knows his calculus. He writes an
equation for the function, and meticulously applies boring
and repetitive memorized steps, until he has extracted an
integral. His result is entirely correct, and altogether
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Fig 5—Integration by summing rectangles.
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uninteresting. It demonstrates great mathematical facility,
but no understanding whatever of the nature of the function.
Next!

Our second student is fluent in geometry. She divides
the space under the curve into a whole bunch of rectangles
(Fig 5) and, since she knows how to compute the area of
a rectangle, has no trouble whatever in summing them to
approximate the whole.
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Fig 6—Including the triangles reduces the error.

Her classmate, a Pythagorean by nature, notices in her
approximation a slew of left-over triangles (Fig 6). This
student knows how to compute the area of a triangle, and
adds (or subtracts) the extra pieces for an even closer
estimate.

Something

Fig 7—Infinitesimals further reduce the error.

Student number four understands infinitesimal calcula-
tion. She reasons that if the rectangles are made very
skinny (Fig 7), the errors caused by the left-over pieces
begin to diminish. Her result is rather precise, but still
demonstrates little understanding of the underlying function.

The fifth student is satisfied with a logical approxima-
tion. He runs a straight edge along the wavy curve (Fig 8),
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Fig 8—Our function as cyclical variations around a trend
line.

with roughly as much “stuff”’ above as below the line. It's
easy to calculate the area of the resulting trapezoid. More
important, this student is the first to recognize that our
function involves cyclical variation about a trend line.

The last student, a natural born technician, prefers a
manipulative solution. Gluing the graph paper to a sheet
of plywood, she uses a saber saw to carefully cut out the
shape, which she then weighs. By also weighing a rectan-
gular piece of the same plywood (the area of which is of
course known), she easily determines the area under the
curve. She also understands, better than her classmates,
that an integral is a measure of how much “‘stuff”’ a function
encloses.

Deriving a Derivative

Another tool for evaluating a function is its derivative,
or rate of change. This is generally equated to the slope
of lines drawn tangent to the curve at various points, as
shown in Fig 9. Note, for example, that the curve exhibits
a positive slope at point A (the dependent variable is
increasing with time), a negative slope at B, and a slope
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Fig 9—Derivative of a function relates to instantaneous
slope.



of zero (a horizontal tangent line) at C. This latter charac-
teristic, zero slope, is typical of functions at their minimum
or maximum value, thus derivatives are a powerful tool for
locating global or local maxima and minima.

But all of this is entirely too mathematical. Let's make
the derivative more intuitive, by flying an airplane along the
surface of our now familiar function. As we proceed from
left to right along the page, we apply wing flaps, elevator
trim, and stick pressure, as well as varying throttle, fuel
mixture, and propeller pitch, as necessary, to trace out our
function in the sky. Notice that the aircraft’s pitch attitude
(the angle which the nose makes with respect to the
horizon) is ever changing. Its rate of change (time derivative)
fully describes the given function.

One Thing at a Time

Of course, our pilot flying Fig 9’s has his hands full.
What with simultaneous changes in stick pressure, elevator
trim, airspeed, mixture, throttle, prop and flaps, it's hard
to know just which input variable caused the observed
response. Which is true of most phenomena we measure
in the laboratory. The more variables we have to deal with,
the harder it is to relate cause to effect accurately.

Enter the partial derivative, a mathematical tool for
measuring constrained rates of change. Its basic tenet is
to hold all independent variables constant except one, and
observe how the function responds to changes in that one
parameter alone. What will happen to the airplane’s pitch
attitude if | vary, for example, throttle setting only, leaving
everything else alone? Partial derivatives answer just such
questions.

The accepted notation for partial derivatives is a frac-
tion, in which the numerator represents the dependent, and
the denominator the independent variable of a function.
Each is preceded by the symbol 8, the Greek lower-case
letter delta. For example, 5B/st represents the partial deriva-
tive of current with respect to time, also known as the partial
time derivative of current. We encounter precisely this
notation in Maxwell’s equations.

Now that we have reviewed a few of the basics of
calculus, we are nearly ready to do what Maxwell did, and
use them to describe electromagnetic waves. But first, we
have to add just a couple more tools to our analytical work-
bench, and they come to us from the discipline of Vector
Calculus.

Curl (in or Out, Your Choice)

If Robin of Loxley truly was the greatest marksman of
twelfth century England, it might be in part because he
imparted curl to his arrows. In the cinema, he’s always
shown drawing back on his bow, and then twisting his wrist
slightly. The arrows fly straighter because they rotate about
their longitudinal axis. You can see for yourself—just watch
the feathers!

In vector calculus, curl brings to mind things rotating,
or swirling, around. It is related to angular velocity, and has
to do with a line integral around a closed path. Since, for
example, we can easily visualize a magnetic field existing
around a current carrying conductor, you can understand
why Maxwell included curl in his equations.

In equations, curl is indicated by the operator del (V,
an upside-down capital Greek letter delta). it involves the
vector algebra cross-product. Thus, for example, “V x E"

would be pronounced “‘the curl of E,”” and has to do with
the rotation of an electric field vector. When we operate with
V by crossing it into a vector function, we get the curl of
that function.

Diverge Away!

When 1 first studied fields and waves, | had great
difficulty visualizing expanding and collapsing fields. The
picture became clear for me when | chanced to see a class-
mate preparing decorations for a dorm party—he was
blowing up balloons. When they inflated, both the enclosed
volume and the surface area increased. And when they later
deflated, the opposite occurred.

We can illustrate divergence, a scalar function of
position, in terms of balloons deflating. Formally, divergence
is defined for a vector function as the ratio of the surface
integral to the volume enclosed, as the volume shrinks to
zero about some point. Functionally, divergence tells us
how dense the “stuff’ in a field becomes as the field
collapses.

In equations, divergence is also indicated by the oper-
ator del (V, the same upside-down capital Greek letter del-
ta we used for curl). It involves the vector algebra
dot-product. Thus, for example, “V - E" would be
pronounced ‘“the divergence of E,”” and has to do with a
collapsing electric field vector. When we operate with V by
dotting it into a vector function, we get the divergence of
that function.

Credit Where It’s Due

We know today (thanks in no small part to Maxwell’s
work) that an electromagnetic wave propagating through
free space is pure energy, composed of mutually orthogonal
(that is, at right angles to each other) electrostatic and
magnetic force fields. Maxwell was hardly the first person
to posit the existence of such waves. They were the topic
of lively discussion by the likes of Gauss, Ampere, Faraday
and others a generation prior. Nor did Maxwell generate
and detect such waves in the laboratory. That feat is
credited to Hertz a generation later. Maxwell’s great
contribution to technology lies in his recognition that, as far
as energy propagation is concerned, electricity and
magnetism are interchangeable.

Not to minimize his individual efforts, but perhaps
Maxwell’s greatest contribution to radio science comes from
his recognizing the importance of the work of others. He
synthesized several theories about electricity and
magnetism into the four equations we know and love so
well. Let’s take another look at these equations in simplified
(free-space) differential form, as seen in Fig 3.

Those Dreaded Equations Again!

Maxwell’s first equation reads: ‘‘the divergence of an
electric field vector is equal to the corresponding electric
charge.” This is a restatement of Gauss’ Law for Electricity.
We know that an electrically charged patrticle will have an
electrostatic field around it. This equation describes the
shape of the electric field caused by an electric charge.

The second equation states: ‘‘the divergence of a mag-
netic field vector equals zero.”” This is Gauss’ Law for
Magnetism, which describes the shape of the magnetic field
surrounding a magnet. You can actually see the shape of
this field (at least in two dimensions), by covering a magnet
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with paper, and shaking on some iron filings. The zero on
the right hand side of the equation indicates you cannot
have a magnetic monopole (that is, a North pole without
a South, or vice-versa).!

The third equation tells us that we can create an elec-
trical field by varying a magnetic field over time. We do this
in electrical generators, every time we move a magnet past
a wire (or a wire past a magnet—it works both ways). The
equation reads ‘‘the curl of an electric field vector, and the
partial time derivative of the associated magnetic field
vector, sum to zero.”’ The zero sum indicates that energy
is conserved, and the equation is also known as Faraday’s
Law.

Maxwell’'s final equation can be read: ‘‘the curl of a
magnetic field vector equals the sum of the electric current
vector plus the partial time derivative of the electric field
vector.” If you think this sounds like another conversion in
which energy is conserved, you’re beginning to catch on!
A magnetic field can be created by either a current, or by
an electric field which varies over time. Or by a combination
of the two. This relationship, also known as Ampere’s Law,
describes the shape of just such a field.

So What Do They Mean?

Let’s consider how radio waves propagate. At the
transmitter, we generate an alternating electric charge (that
is, an ac voltage) which we apply to a wire (the transmit
antenna). A time varying electrostatic field now surrounds
the wire, in accordance with Maxwell’s first equation. As
the electrostatic field expands and collapses, it induces in
front of it an expanding and collapsing magnetic field, the
shape of which is described by Maxwell’s fourth equation.
This time varying magnetic field will induce ahead of it an
expanding and collapsing electrostatic field, as described
by Maxwell’s third equation.

And so the wave propagates: expanding and collapsing
electrostatic field, inducing ahead of it an expanding and
collapsing magnetic field, which gives rise to an expanding
and collapsing electrostatic field. Maxwell’s third equation,
fourth equation, third equation and so forth, until the wave
reaches its destination.

Let's suppose the forward propagating wave en-
counters a nearby magnet enroute. This happens, for
example, when space communications signals encounter
the large round magnet which we call the earth. Maxwell’s
second equation tells us the shape of the magnetic field
which surrounds a magnet. This field influences the forward
propagated signal, and is responsible for the change in
polarization (Faraday Rotation) with which moonbouncers
are quite familiar.

Eventually, our propagated wave produces an electrical
field in the vicinity of a receive antenna. An emf is induced

Maxwell notwithstanding, physicists at the Monopole,
Astrophysics, and Cosmic Ray observatory (MACRO) at
ltaly’s Gran Sasso National laboratory have reason to
believe that fundamental particles with but a single pole
may in fact exist, and are currently engaged in a search
for the elusive magnetic monopole [Science News],
October, 5, 1991.
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into the conductor by the surrounding electrostatic field
(Maxwell's first equation in reverse), and we now have a
received voltage to process.

In this over-simplified example, we see that Maxwell’s
equations account for transmission, reception, antenna
operation, propagation and modification of electromagnetic
waves. They also enable us to compute such important
constants as the speed of light (Maxwell himself did this,
in terms of the assumed permittivity and permeability of free
space, with results which correlated remarkably well with
measured values), and the characteristic impedance of free
space (that is, the impedance to which our antennas never
quite match!). Not to mention making it quite clear why we
can’t receive well on our rubber duckies, signals which were
transmitted from a horizontally polarized beam.

Of course, we have been dealing thus far with simpli-
fied versions of Maxwell’s equations, which neglect di-
electric and magnetic materials. By going back to the
original equations (Figs 1 and 2), we could determine how
(and why) electromagnetic waves slow down in the dielectric
of coaxial cables or PC boards; why (and by how much)
resonant frequency changes when we insert a powdered
iron core into an inductor; and how much loss (fortunately,
precious little) radio waves suffer when forced to travel
through that mixture of mostly nitrogen, a little oxygen, and
trace gasses which raises a column of mercury 29.92 inches
at sea level.

Sure, you could do all that without Maxwell’s equations.
But isn't it nice to know there really is a mathematical basis
for all we do with radio waves?

Conclusions

Nobody really likes math. Not you, not me, not even
the mathematicians. But if we can put our innumeracy aside
long enough to take a hard look at Maxwell’s equations,
we will see that they provide an analytical framework for
all of our radio propagation experiments. Maxwell’'s equa-
tions certainly don’t make our tropo, E-skip, meteor or EME
signals any louder. They simply make them possible.
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Microwave Update 91

Microwave Update "91 was held October 17-20, 1991, in
Arlington, Texas. Hosted by the Morth Texas Microwave
Society, the evant is an opportunity for UHF and microwave
experimenters to shara their work. Papers submitted for the
Proceadings of Microwave Update "91 numbered in the 60s,
with over 20 authors presenting their contributions in
persan. Copies of the 350-page Proceedings are available
from ARRL for $12.00 (plus postage and handling).

The Morth Texas Microwave Society holds a Microwave
Update nearly every year. If you've missed out in the past
and would like information on where the 1992 Microwave
Update will be held, pleasa contact Al Ward, WBSLUA, or
Greg Mcintire, AASC, of the North Texas Microwave
Society, or Maty Weinberg at ARRL. (Photos courtesy
WASVUB and W4RI)

Al Ward, WBSLUA, co-chair of the event, poses with
his copy of the conference proceedings.

Paul Shuch, N6TX, presents his paper "'Maxwell
Without Tears."

January 1992 11




