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ABSTRACT 
 

The San Marino Scale, an analytical tool for assessing the significance of transmissions 
from Earth, was adopted by the IAA SETI Permanent Study Group in 2007.  This additive 
model, which encompasses estimates of both signal strength and signal characteristics, remains a 
work in progress.  It is statistically valid only to the extent that the two terms are assumed to be 
wholly independent discrete random variables.  We question this assumption of independence, 
and, in fact, find a strong negative correlation between the two terms, though we further suspect 
that the interaction is nonlinear.  Thus, we propose to amend the San Marino Scale, making it 
more statistically robust by capturing, and compensating for, this interdependence between 
detectability and information content. 
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INTRODUCTION  
 

The San Marino Scale for 
quantifying the potential impact of 
transmissions from Earth, as first proposed 
by Iván Almár (Almár, 2005) at a SETI 
conference in the small European republic 
whose name it shares, consists of two 
presumably independent analytical terms. 
The Intensity (‘I ’) term, treated extensively 
in Shuch and Almár (2006), quantifies 
signal strength relative to the background 
solar flux in the same frequency range, and 
at the same modulation bandwidth, as the 
signal of interest.  Signal Characteristic (the 
‘C’ term) relates to information content, as 
described in Almár and Shuch (2007a).  The 
resulting additive model was validated by 

applying it to several historical 
transmissions from Earth (Shuch and Almár, 
2007b).  This paper seeks to improve 
quantitative aspects of the San Marino 
Scale, by testing the validity of one key 
assumption implicit in the additive model: 
that the two terms are indeed independent.   
 
INTERDEPENDENCE OF TERMS 
 

One important aspect of the ‘I ’ term 
is that it captures the spectral density of any 
transmission from Earth.  As such, it 
incorporates the modulation bandwidth of 
the signal, as that parameter establishes the 
minimum bandwidth required of an 
extraterrestrial receiver attempting to 
recover the transmission.  The ‘C’ term 
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encompasses information content.  
Information theory (Shannon and Weaver, 
1949) states that transmission bandwidth is 
correlated to information content.  Thus, we 
expect a certain degree of interdependence 
between the ‘I ’ and ‘C’ terms. 

 
INDEPENDENCE SAMPLE 
 
 In order to test for possible 
interaction between the ‘I ’ and the ‘C’ terms 
of the San Marino Scale, we draw a sample 
from the population of possible interstellar 
transmissions from Earth.  We start by 
characterizing six different potential Active 
SETI transmitters: a typical terrestrial UHF 
television broadcast station, a communi-
cations satellite uplink terminal, an amateur 
radio microwave moonbounce (EME) 
facility, NASA’s Goldstone deep space 
network station, and the Evpatoria and 
Arecibo planetary radar transmitters.  For 
each of these various transmitters, we 
contemplate the results of applying up to 
four possible modulation schemes: 
narrowband unmodulated continuous wave 
(CW), narrowband SSB or FM voice, 
wideband analog video programming, and 
ultra-wideband digital data.  The resulting 
combinations of effective isotropic radiated 
power (EIRP) and information bandwidth 
allow us to quantify the spectral intensity of 
24 different classes of signal, by invoking 
the ‘I ’ term of the San Marino Scale.  The 
24 signals in our sample span the entire 0 to 
5 range of ‘I ’ term possibilities. 
 Next, we analyze the potential 
information content of all of our candidate 
modulation schemes, assigning a ‘C’ term to 
each of the fourteen signals in our 
transmission sample.  On the 1 to 5 range of 
possible ‘C’ term values, our sample spans 1 
to 4 (a 5 being reserved for responses to 
actual SETI detections, none of which has 
yet been confirmed).   

 Summing the ‘I ’ and ‘C’ values of 
our sample, we see that we have described a 
collection of terrestrial transmissions which 
score between 1 and 7 on the 1-to-10 San 
Marino Scale.  The results are summarized 
in Figure 1, below. 
 
ANALYSIS METHOD 
 

Counts of the various SMI levels are 
generated from I  and C frequency (number 
of occurrences) data.  With these data, we 
count how many times a level of I  or C 
occurs, but we have no way of knowing how 
often these levels did not occur thereby 
giving us an incomplete, truncated event 
space. This contrasts with data in which we 
count the number of specific event 
occurrences, and also the count of the 
number of times the specified event does not 
occur: e.g., rolling a six-sided die and 
counting the number of ones and counting 
the number of times a one does not occur. 
These two counts completely specify the 
event space. 
 The usual linear regression methods 
which assume constant variance, normal 
error structures, and complete event space, 
are not appropriate for our count data for 
three main reasons: (1) the linear model 
might lead to the prediction of negative 
counts; (2) the variance of the response 
variable is likely to increase with the mean; 
and (3) the model errors will not be 
normally distributed. 
 To determine the probability of 
occurrence of a specified I  and C 
combination, consider that the terms I  and C 
are bivariate random variables described by 
a joint distribution. This joint distribution 
determines both the marginal and 
conditional distributions of I  and C. The 
major thrust of the following analysis is 
characterizing these distributions. 
  



Page 3 of 15 

 
Figure 1 

Sample of possible interstellar transmissions from Earth 
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 Intensity I  has 6 levels (0-5) and 
Content C has 5 levels (1-5) which gives 30 
possible combinations of I  and C 
classifications. Both the I  and C scales have 
an ordered structure as, though the 
difference of any two adjacent levels differ 
by one, this difference may not scale linearly 
throughout the respective I  and C ranges. 
Further, the message content factor C may 
be better represented as a nominal scale, in 
which the level differences have no 
significance beyond indicating a particular 
level is somehow greater or lessor than 
another. We perform a test of the viability of 
Content represented as ordinal versus 
nominal in the Parametric Analysis section 
below. 
 A randomly chosen combination 
from a population of combinations has a 
probability distribution. If we represent the 
IxC combinations in a table with 6 rows of 
intensity categories and 5 columns of 
message content categories, we have a 
contingency table with the frequencies of the 
randomly chosen IxC combinations 
contained in each of the table cells. The 
probability of occurrence of each IxC 
combination can be formed from the 
marginal sums, and is the joint probability of 
the IxC combinations. Also, we can form 
the conditional probabilities, thereby gaining 
an understanding of how, say, the 
probabilities of C change as the level of I  
changes. 
 To determine the independence of I  
and C we equate the cell probabilities with 
the product of the cell's marginal (the cell 
row and the cell column) probabilities. If the 
equality holds, then I  and C are 
independent. Thus, if our sample is an 
unbiased sample of combinations of 
intensity and message content, we may 
determine the independence of I  and C. 
Once independence (or lack thereof) has 
been established, we can ask several other 
questions such as, for our SMI situation, 

given a message is rated benign, what is the 
probability of it having a low intensity as 
well, or the converse, given a case has a 
high intensity, what is probability it has a 
compromising message?  
 For a 6x5 table, it is not typically 
possible to summarize measures of 
association with a single number (e.g., 
correlation) without loss of information. 
While single such numbers can represent 
specific features of association, e.g., the 
Pearson correlation is a measure of the 
monotonicity between I  and C, it can be 
used only if our data are ordinal. We 
investigate the viability of correlation 
measures in the Parametric Analysis section 
below. 

 Ordinal scales have an ordered 
structure with the potential for factor 
association and interaction, including 
monotone trends. We now propose the use 
of log-linear models using the expected 
frequencies IxC rather than the cell 
probabilities so we can use Poisson-
distributed errors, which are often 
appropriate for frequency. Log-linear 
models allow us to recover, in addition to 
the presence of trending, cell weights (i.e., 
IxC weights) in the form of probabilities, 
odds ratios for adjacent cells, and tests for 
independence.  Log-linear modeling is data-
based, hence we must use a completely 
random sample of I  and C combinations. 
Although it is unlikely that our sample is 
random, more exhaustive sampling is not 
currently tractable, so we make the 
assumption our data are from a random 
sample. 
 As stated previously, there are 30 
combinations of I  and C possible from the 6 
levels of I  and the five levels of C. This 
means that there are 30 ways these 
combinations can sum I  and C to 10: there is 
one way to get a sum of 1 and a sum of 10, 
there are two ways to sum to 2 and 9, 3 ways 
to sum to 3 and 8, 4 ways to sum to 4 and 7, 
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and 5 ways to sum to 5 and 6. Thus each 
possible combination of the sums must be 
weighted differently - the weighting for, or 
probability of, obtaining a sum of 5 when 
I=4 and C=1 versus when I=1 and C=4 are 
quite likely very different. Therefore, the 
opportunities for finding specific, single 
weightings of I  and C (such as through a 
regression relationship) are limited, whereas 
weighting on the IxC cells occurs naturally 
in contingency tables. Thus, another reason 
for adopting a log-linear modeling approach 
is it allows for assigning individual cell 
weights. 
 The log-linear model is one of the 
specialized cases of general linear models, 
and is often used with Poisson-distributed 
(counts) data. Our assumed randomly 
selected cases of combinations of I  and C 
are counts data and hence our choice of a 
log-linear model. Now, for two-way tables, 
an independence (no interaction between I  
and C) model rarely gives an adequate fit. 
As we have more than two levels of I  and C, 
we won't have a saturated model (i.e., we 
have fewer parameters to estimate than we 
have cell combinations) leaving us sufficient 
degrees of freedom for parameter 
estimation. The form of the log-linear model 
we use is (Agresti, 1990): 
 

 
 
Where ln(eij) is the naperian log of the 
expected frequencies of the I  and C cell 
combinations, µ is the overall mean of the 
log of the expected frequencies, α, β, and γ 
are the parameters to be estimated for I  , C, 
and I×C  , respectively, and i and j are the 
category levels for I  and C. 
 From Equation (1) we have four 
parameters to estimate. The first step to 
building a log-linear model is to calculate 
the expected cell frequencies from the cell 

data resulting from a sample, as shown in 
Table 1. The basic calculation for each 
expected cell count eic from each respective 
sample (observed) count oic is the row sum 
times the column sum divided by the grand 
sum: 
 

 
 
where 
 

 
 

 Data supplied by H. Paul Shuch 
(2008) populates a contingency table (Table 
2) showing the observed counts and the cell 
expectation as calculated from (2) by cell 
along with the row and column marginal 
sums. Table 3 converts the counts and 
expectations data into, respectively, the 
observed proportions and their respective 
expectations. With the expected frequencies 
calculated from Equation (2), we now know 
the expected probabilities (weights) of each 
I  and C combination from the proportions in 
Table 3, and we can estimate the parameters  
α, β, and γ. The parameters  are related to 
the association measure known commonly 
as the odds ratio. Odds essentially are the 
ratios between the frequency of being in one 
category (or level) by the frequency of not 
being in that category. For example, the 
odds of being in I   = 4 versus I  ≠4 is 

 
The odds ratio is the cell count of one or 
more levels by the cell count of one or more 
other levels. For example, the odds ratio of a 
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message being in level 2 rather than level 1 
given the intensity is 4 is  

     
and the odds ratio of a message being in 
level 2 given the intensity level is 4 is 
 
 
 
 
DESCRIPTIVE ANALYSIS 
 

Before determining the parameters of 
the log-linear model in Equation (1), we first 
explore the behavior of the sample data (size 
24) used to estimate µ, α, β, and γ. We begin 
by examining the statistical properties of 
SMI. Figure 2 is a histogram of SMI 
overlaid with a kernel density plot 
(Venables, 2002). We see that these data 
have a skewed probability distribution, 
which is also indicated by the Box plot in 
Figure 3. The statistical test for identifying a 
normal distribution is the Shapiro-Wilk test 
(Shapiro and Wilk, 1965) which indicates 
that SMI is roughly normal (W = 0.9185, p-
value = 0.03185, we assume a W of 0.95 or 
higher with a p-value of 0.05 or less 
constitutes adequate acceptance that SMI is 
normal for sample sizes of from 3 to 2,000), 
which is contrary to the graphical 
representations.  

We suspect that the absence of C=5 
data cause the skewed appearance of SMI. 
The SMI median is 6, the interquartile range 
(iqr) is 2.24, the mean is 5.21, and the 
standard deviation is 1.69. Additional data 
may help resolve this apparent discrepancy. 
 Next we examine the properties of 
Intensity I  and Content C. Figures 4 and 5 
show the respective histograms. Notice that 
neither is remotely normal, which is 
expected of, particularly, small samples of 
counts data. These distributions appear 
roughly uniform. 

 

 
 

Figure 2 
A histogram of SMI including a 

kernel distribution overlay.  This plot 
leads us to suspect the sample is not 
normally distributed. 

 

 
Figure 3 

Box plot of SMI showing a median of 6, 
iqr of 2.25, mean of 5.21, and standard 

deviation of 1.69. 
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It is useful to examine the coverage 
of SMI versus I  and C. We see in Figure 6 
that as I  increases, the range of coverage of 
SMI by each level of I  decreases even 
though the SMI median increases. The range 
(interquartile)  coverage of SMI by C is 
nearly constant, though the SMI median 
values at each level of C vary. These 
characteristics of I  and C contribute to 
making the usual modeling methods such as 
regression inadequate for determining the 
properties of the  IxC interaction. 
 To complete our examination of the 
Intensity and Content sample data, we now 
see  how the frequencies of I  and C populate 
the 6x5 contingency table. We do this using 
an association plot and a mosaic plot. These 
plots are shown in Figures 7 and 8. The 
association plot in Figure 7 shows the 
departures from expectations of the 
observed frequencies in the contingency 
table. Note that we must subtract one from 
the levels of Intensity I  in the plot to obtain 
the correct sample I  value. The black bars 
rising above any specified level I  show the 
excess of counts over the expected counts 
for a particular IxC cell. The largest 
excesses occur for cells (I=0)x(C=4), 
(I=1)x(C=3), and (I=5)x(C=1). Although 
the smaller than expected departures (red 
bars dropping below any specified level of 
I ) are less significant than the excesses, we 
observe that the two largest are (I=4)x(C=4) 
and (I=5)x(C=4). 
 The mosaic plot shows that there are 
significantly more (I=5)x(C=1) (blue 
rectangle) counts than expected, which is 
shown in the association plot as well. The 
mosaic displays the standardized residuals 
of the log-linear model of the counts by the 
color and outline of the mosaic's tiles. 

 
Figure 4 

A histogram of Signal Intensity I 
including a kernel distribution overlay.  
This implies a uniform distribution. 

 
Figure 5 

A histogram of Message Content C 
including a kernel distribution overlay.  
This implies a uniform distribution. 
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Figure 6 

Box plots of SMI by first Intensity I and then 
Content C. Notice the range change through the 
levels of I over increasing SMI versus the small 
range change of SMI by C.  The medians of SMI 
by C fluctuate without apparent pattern. 

 
Figure 7 

The association plot indicates deviations from the 
expected counts for each I×C cell. Red bars 
dropping below an I level indicate less than the 
expected counts, and the black bars rising above 
an I level indicate counts that exceed the expected 
numbers.  Note: subtract one from the levels of I 
in the plot to obtain the correct sample I values. 
 

 

 
 

Figure 8 
The mosaic plot shows that there are 

significantly more (I=5)×(C=1) (blue rectangle) 
counts than expected.  The mosaic tiles display the 
standardized residuals of the log-linear model of 
the counts by the color and outline of the mosaic 
tiles.  Note: subtract one from the levels of I in the 
plot to obtain correct sample I values. 
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This mosaic plot shows that we can 
expect a good fit to the log-linear model 
introduced above, the details of which we 
explore following a discussion of sample 
size. Recall that we must subtract one from 
the levels of Intensity I  in the plot to obtain 
the correct sample I  value. 

 
SAMPLE SIZE  
 

A contingency table is considered 
sparse when many cells have small 
frequencies. This is certainly the case with 
the SMI IxC table. An index measuring 
sparseness is formed as the ratio of the 
sample size n to the number of cells N in the 
table as n/N=24/30=0.80. Small ratio  values 
indicate sparse tables. 
 The size n/N that gives measures of 
adequate contingency table models tend to 
decrease as N increases. Koehler and Larntz 
(1980) suggest 
 

 
 

Clearly, our sample size of 24 satisfies 
this minimum number of I  and C counts. 
However, as we have a sparse table - i.e., the 
counts data are not distributed across all 
combinations of I  and C - this estimation 
may be compromised. 

 Garwood (1936) suggested a 
100(1−α)% confidence interval for the 
parameter θ of a Poisson distribution (which 
is how the counts data are distributed, as we 
shall see in the Parametric Analysis section ) 
as: 

 

 

where df is the degrees of freedom 
derived from the number of rows (r) and 
columns (s) of the contingency table as: 

df=(r-1)(s-1)=(6-1)(5-1)=20,  
ω is a shape parameter for the 

confidence interval such that 
ωU−ωL=α ,ωU ,ωL ∈ [0 , 1] , 
α is the desired confidence level such 

that α∈(0 ,1) ,  
and χ2

2df;ω denotes a chi-square 
distribution with 2df degrees of freedom and 
shape ω. The confidence interval for the 
Poisson parameter θ is dependent on the 
contingency table size, the desired 
confidence level, and the associated 
quantiles from a χ2 distribution. We use this 
information to determine a minimum sample 
size. 

First, to be 100(1−α) sure that the error 
does not exceed the amount d (using the 
normal distribution approximation for large 
sample sizes) of 100(1-α) we have 

 

 
                                                                                            

where the estimated standard deviation σ is 
from the residual deviance derived in the 
Parametric Analysis section and nt is the df 
of the contingency table. This, then, gives an 
expression for the sample size n (using 
d=R[α ,ω , χ] ) 
 

 
 

To be 95% sure that our contingency 
table observation population will give a 
sufficient log-linear model, we need a 
sample size of at least 47 distributed across 
all contingency table cells. Our non-random 
sample size of 24 thus gives us an at-best 
confidence level of: 
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which gives us a confidence level of 
72.22%. It is desirable, then, to re-run all our 
analyses with a sample size of at least twice 
the sample size used for modeling in the 
Parametric Analysis section below, and the 
cases must be randomly selected. 
 
PARAMETRIC ANALYSIS 
 

In this section, we address the 
specifics of the parameter estimation of the 
log-linear model that we have suggested will 
best represent the frequencies of the IxC cell 
combinations. Two assumptions about log-
linear models need testing relative to our 
data set prior to evaluating the significance 
and weight of the model parameters. The 
two assumptions are the viability of using 
ordinal scales for I  and C, and whether the 
errors are Poisson-distributed. As it turns 
out, we can check both these assumptions 
using the same model-building process. 
 To assess the fitness of the Poisson 
error structure for the ordinal scale log-
linear model, we first fit the independence 
model (i.e., Equation (1)) without the γ 
parameter. From the output of the log-linear 
model fit without the interaction (Table 4), 
we see that the residual deviance of 28.123 
on 21 degrees of freedom approaches the 
ideal of equal residual deviance to the 
number of degrees of freedom, indicating 
that the Poisson error model is quite 
promising. We see also, that when we 
construct an ordinal-by-nominal model (I  
ordinal and C nominal, Table 5), which 
assumes that Content levels are without the 
relationship of linear level-to-level 
differences, and then compare these two 
models, we see the ordinal-by-ordinal model 
is superior. The Analysis of Variance 
(ANOVA) comparing the ordinal-by-ordinal 
model with the ordinal-by-nominal model 

shows (Table 6) that these two models are 
not significantly different (Deviance = 
0.2581, Prob(>|χ|=0.0789), but we note 
comparing the Akaike Information Criterion 
(AIC, Akaike, 1969) of the ordinal-by-
ordinal independence model versus the 
ordinal-by-nominal independence model, 
73.487 versus 77.229, has the ordinal-by-
ordinal model superior (smaller AIC is 
better). Also, we note that the ordinal-by-
nominal model residual deviance of 27.865  
on 19 degrees of freedom still leads us to 
support a Poisson error distribution model. 
 Next we test the interaction term in 
the ordinal-by-ordinal model. Table 4 shows 
that output of the independence model. We 
see that neither I  nor C make significant 
contribution (neither I  nor C has 
Prob(>|z|)<0.05) to the frequencies of the 
contingency table cells. This alone has us 
question the viability of the independence 
model. We construct the Equation (1) model 
whose output is in Table 7, then use ANOVA 
to compare the independence model with the 
interactive model. Indeed, the ANOVA 
output (Table 8) gives a Deviance of 8.4570 
with Prob(>|χ|)=0.0036 indicates the 
interaction model is superior to the 
independence model. In addition, the AIC of 
the interaction model versus the 
independence model of 67.03 versus 73.487 
shows that the interaction model is superior. 
 Two other model characteristics 
recommend the interaction model. The first 
is that the Poisson error structure is 
sufficiently supported with a residual 
deviance of 19.666 on 20  degrees of 
freedom – the equality is clear with this 
model. The second is that all three 
parameters that are estimated from the data 
are statistically significant, with the 
Prob(>|z|)<0.00895 of the C term being the 
largest of the three. 
 Therefore, we have that the log-
linear interaction model constructed from 
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the Shuch data is superior to all other 
models considered. 
 
SMI LEVEL WEIGHTING 
 

Using either the log-linear model or the 
contingency table probabilities, weights can 
be assigned to any SMI risk level. 

 
 
   SMI        Weight (%) 

1   6  
      2   7  

3   10  
4   13  
5   13  
6   16 
7   14 
8   11 
9   5 
10   0 

 
Due to rounding error in the contingency 

table probabilities, the total weight is 95% 
and not the expected 100%. 

Interestingly, we would expect the 
lowest SMI levels to have the highest 
probabilities of occurrence, as it is suspected 
that there are far more broadcasts of low 
intensity, innocuous message content than is 
present in the frequencies in Table 2. The 
weightings above are suspected of being the 
result of non-random case selection. This 
situation can be corrected in two ways:  

(1) use a random sample, or  
(2) use expert opinion to establish the 

expected values for each I×C  cell. 
 
CONCLUSIONS 
 

We set out to provide the added 
dimension of SMI level weight (probability) 
to the SMI risk scale. We began by 
examining the statistical properties of SMI, 
Intensity, and message Content. These 
properties gave us insight into the 

distributions of our sample, across their 
respective levels. We found that Intensity 
and Content have roughly uniform 
distributions, and SMI has a roughly normal 
distribution. From a purely combinatorics 
position, SMI will be nearly normal as the 
center levels of 5 and 6 have five ways to 
arrive at these sums, with decreasing counts 
for sums less than 5 and greater than 6. 

We showed that our sample size of 24 is 
half what is needed to achieve a 95% 
confidence level in our modeling outcomes. 
The confidence level associated with the 
sample size of 24 is approximately 72%. 
This means that we could arrive at the same 
log-linear model just by chance 28% of the 
time. 

The contingency table populated with 
our sample observations provided individual 
cell (Intensity by Content) weights 
(probabilities). These weights allow us to 
characterize any SMI level with a 
probability of occurrence. 

Finally, the log-linear model generated 
from the sample showed the viability of an 
interactive, linear model as given in 
Equation (1). The sufficiency of the log-
linear model allows us to predict the weights 
of any SMI level, even those that are 
missing or marginally represented in the 
sample. 

We have shown that SMI can be 
enhanced by the addition of weighting the 
levels of SMI. The enhancement can be 
combined with the SMI risk for form a tuple 
of risk and probability of occurrence. Thus, 
we would specify SMI as SMI(6, 5%) 
indicating a risk of 6 with a 5% chance of 
occurring.  

Despite our preference for a log-linear 
model, we hesitate to recommend any 
immediate changes to the San Marino Scale, 
as currently adopted by the SETI Permanent 
Study Group of the International Academy 
of Astronautics.  Our complete analysis is 
based upon a convenience sample of 



Page 12 of 15 

hypothetical transmissions from Earth, the 
size of which we have shown to be 
inadequate for high levels of confidence.  

While we would desire a larger sample 
of historical transmissions with which to 
further enhance our model, the fact is that 
deliberate transmissions from Earth to 
extraterrestrial intelligence are exceedingly 
rare events.  In fact, it can be argued, the 
number of facilities on this planet currently 
engaged in significant METI (Messaging to 
Extra-Terrestrial Intelligence) experiments 
can be counted on the thumbs of one hand.  
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